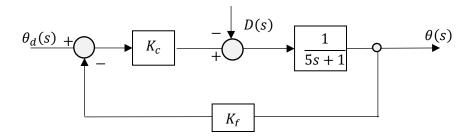
Control – open book examination

Figure a:



a) Show that the system presented as a block diagram in figure (a) has the transfer function

$$G(s) = \frac{\theta(s)}{\theta_d(s)} = \frac{K_c}{5s + 1 + K_c K_f}$$

Where K_c is the controller gain, K_f is the feedback gain, and D(s) is a disturbance signal. [3 marks] Solution:

Step 1	ignore D(s) as it's irrelevant to the question. This gives a forward transfer function of $\frac{K_c}{5s+1}$.	0.5 marks
Step 2	$\theta(s) = \left(\theta_d(s) - K_f \ \theta(s)\right) \left(\frac{K_c}{5s+1}\right)$ $\theta(s)(5s+1) = K_c \theta_d(s) - K_c K_f \ \theta(s)$ $\theta(s) \left(5s+1 + K_c K_f\right) = K_c \theta_d(s)$	1 mark 1 mark
Step 3	Present in the correct form as the transfer function: $G(s) = \frac{\theta(s)}{\theta_d(s)} = \frac{K_c}{5s + 1 + K_c K_f}$	0.5 marks

b) If the input to the system in part (a) is a step input $\theta(s) = \frac{1}{s}$, use the final value theorem to calculate the steady state error for $K_c = 1$, $K_f = 1$, and D(s) = 0. Show your working. [3 marks]

Solution:

Step 1	Put in the values from the question to give: $\theta(s) = \frac{1}{s} \left(\frac{1}{5s+2} \right)$	1 mark
Step 2	Error is given by $\theta_d(s) - \theta(s) = \frac{1}{s} - \frac{1}{s} \left(\frac{1}{5s+2}\right) = \frac{1}{s} \left(\frac{5s+2}{5s+2} - \frac{1}{5s+2}\right) = \frac{1}{s} \left(\frac{5s+1}{5s+2}\right)$	
	$\sigma_d(s) = \sigma(s) = \frac{1}{s} - \frac{1}{s}(\frac{1}{5s+2}) - \frac{1}{s}(\frac{1}{5s+2}) - \frac{1}{s}(\frac{1}{5s+2}) - \frac{1}{s}(\frac{1}{5s+2})$	1 mark
Step 3	Use the final value theorem to give the error: $\lim_{t \to \infty} (\theta_d - \theta) = \lim_{s \to 0} s(\theta_d(s) - \theta(s)) = \frac{s}{s} \left(\frac{5s+1}{5s+2}\right) = \frac{1}{2} \text{ or } 0.5$	1 mark

Alternative time domain solution:

Step	Put in the values from the question to give:	1 mark					
1	$\theta(s) = \frac{1}{s} \left(\frac{1}{5s+2} \right)$						
	$\theta(s) = \frac{1}{s} \left(\frac{1}{5s+2} \right)$						
Step	Using the table of Laplace Transforms:						
2	$1 - e^{-at} \xrightarrow{\mathcal{L}} \frac{a}{s(s+a)}$						
		1 mark					
	$\theta(s) = \frac{1}{s} \left(\frac{1}{5s+2} \right) = \frac{1}{2} \left(\frac{1}{s} \left(\frac{0.4}{s+0.4} \right) \right)$						
Step	Inverse Laplace transform gives:						
3	$\theta(t) = \frac{1}{2}(1 - e^{-0.4t})$	0.5 marks					
	$\theta(t) = \frac{1}{2}(1 - e^{-0.4t})$ And so $\lim_{t \to \infty} (\theta_d - \theta) = 1 - \frac{1}{2}(1 - e^{-\infty}) = \frac{1}{2}$ or 0.5	0.5 marks					

The question explicitly asks for the final value theorem: deduct 1 mark if the correct answer is gained using the time domain method.

c) Show that the rise time to reach 90% of the final steady state value for the step input in part (b) is 5.76s.

Solution:

Step	Students should already have:	
1	$\theta(s) = \frac{1}{s} \left(\frac{1}{5s+2} \right)$	
Step	Solve in the time domain using the table of Laplace Transforms:	
2	$1 - e^{-at} \xrightarrow{\mathcal{L}} \frac{a}{s(s+a)}$ $\theta(s) = \frac{1}{s} \left(\frac{1}{5s+2} \right) = \frac{1}{2} \left(\frac{1}{s} \left(\frac{0.4}{s+0.4} \right) \right)$	1 mark
	3(33 + 2) - 2(3(3 + 0.4)) Inverse Laplace transform gives:	
	$\theta(t) = \frac{1}{2}(1 - e^{-0.4t})$	1 mark
Step	Inverse Laplace transform gives:	
3	If $1 - e^{-0.4t} = 0.9$ then $e^{-0.4t} = 0.1$	1 mark
	$0.4t = -\ln 0.1 = 2.30$	
	t = 5.76s	

d) With the Routh-Hurwitz criteria, show that a system with the characteristic equation

$$s^4 + 2s^3 + 3s^2 + 4s + 5$$

will be unstable.

[3 marks]

[3 marks]

Solution:

Step 1	Criterion 1: No change of sign in the characteristic equation so this					0.5 marks		
	criterion	is satisfied						
Step 2	Begin the Routh table by filling in the first two lines correctly:							
		<i>s</i> ⁴	1	3	5	0		0.5 marks
		s ³	2	4	0	0		0.5 marks
		<i>s</i> ²						
		S						
		1						
Step 3	Step 3 Calculate the missing values to give the full Ro							
		<i>s</i> ⁴	1	3	5	0		1 mark
		s ³	2	4	0	0		
		<i>s</i> ²	1	5	0	0		
		S	-6	0	0	0		
		1	5	0	0	0		
Step 4	Comment on the first column of the Routh Array:						1 mark for	
	There are two changes of sign in the column and so we can deduce that						the essential	
	there are two roots on the right hand side of the s plane, i.e. with a					red bits of		
	positive real value of σ for $s = \sigma + i\omega$. This means that the magnitude of					the full		
	the response will increase exponentially over time and hence the system					formal		
	will be unstable.					expansion		
								here